Digital pathology projects often require assigning a class to cells/objects. For example, you may have a segmentation of cells/glomeruli/tubules and want to identify the ones which are lymphocytes/sclerotic/distal. This classification process can be done using machine or deep learning classifiers by supplying the object of question and receiving an output score which indicates the likelihood that that particular object is of that particular type.
This blog post will demonstrate an efficient way of using QuPath to help find the ideal likelihood threshold for your classifier.
Continue reading Using QuPath To Help Identify An Optimal Threshold For A Deep Or Machine Learning Classifier