Instead of transferring large amounts of image data, this post discusses how to set up a centralized Omero server for remote access by QuPath, to enable real-time whole slide image reviewing and annotating!
Continue reading Using OMERO in QuPath to have remote access to your dataTag Archives: qupath
Using Paquo to directly interact with QuPath project files for usage in digital pathology machine learning
This is an updated version of the previously described workflow on how to load and classify annotations/detections created in QuPath for usage in downstream machine learning workflows. The original post described how to use the Groovy programming language used by QuPath to export annotations/detections as GeoJSON from within QuPath, made use of a Python script to classify them, and lastly used another Groovy script to reimport them. If you are not familiar with QuPath and/or its annotations you should probably read the original post first to provide better context and understanding of the respective workflows, as well as being able to appreciate the more elegant approach taken here. If you are already using the described approach, you should be able to easily modify it to follow this newer approach.
Continue reading Using Paquo to directly interact with QuPath project files for usage in digital pathology machine learningDe-array a Tissue Microarray (TMA) using QuPath and Python
This blogpost demonstrats how to use QuPath and Python to de-array a tissue microarray (TMA) for computational analysis and was co-authored by Fan Fan (fxf109@case.edu)
Continue reading De-array a Tissue Microarray (TMA) using QuPath and PythonExporting and re-importing annotations from QuPath for usage in machine learning
Update-Nov 2020: Code has now been placed in github which enables the reading and writing of compressed geojson files at all stages of the process described below. Compression reduces the file size by approximately 93% : )
QuPath is a digital pathology tool that has become especially popular because it is both easy to use to and supports a large number of different whole slide image (WSI) file formats. QuPath is also able to perform a number of relevant analytical functions with a few mouse clicks. Of interest in this blog post is mentioning that the pathologists we tend to work with are either already familiar with QuPath, or find it easier to learn versus other tools. As a result, QuPath has become a goto tool for us for both the creation, and review of, annotations and outputs created by our algorithms.
Here we introduce a robust method using GeoJSON for exporting annotations (or cell objects) from QuPath, importing them into python as shapely objects, operating upon them, and then re-importing a modified version of them back into QuPath for downstream usage or review. As an example use case we will be looking at computationally identifying lymphocytes in WSIs of melanoma metastases using a deep learning classifier.
Continue reading Exporting and re-importing annotations from QuPath for usage in machine learning