This is an updated version of the previously described workflow on how to load and classify annotations/detections created in QuPath for usage in downstream machine learning workflows. The original post described how to use the Groovy programming language used by QuPath to export annotations/detections as GeoJSON from within QuPath, made use of a Python script to classify them, and lastly used another Groovy script to reimport them. If you are not familiar with QuPath and/or its annotations you should probably read the original post first to provide better context and understanding of the respective workflows, as well as being able to appreciate the more elegant approach taken here. If you are already using the described approach, you should be able to easily modify it to follow this newer approach.
Continue reading Using Paquo to directly interact with QuPath project files for usage in digital pathology machine learning