Through a series of 4 blog posts, we’ll discuss and provide working examples of how one can use the open-source library Ray to (a) scale computing locally (single machine), (b) distribute scaling remotely (multiple-machines), and (c) serve deep learning models across a cluster (basic/advanced). Please note that the blog posts in this series increasingly raise in difficulty!
This is the second blog post in the series, (the first one here), where we will go into greater detail about how Ray Cluster creation works, associated terminology, requirements for successful execution, and extend our previous local-only example to a distributed environment.
Continue reading Ray: An Open-Source API For Easy, Scalable Distributed Computing In Python – Part 2 Distributed Scaling